

Journal of Organometallic Chemistry 571 (1998) 215-222

Chiral modifizierte Dicarbonyl(cyclopentadienyl)ferrio-phosphane: Synthese und Bestimmung der Inversionsbarriere am Phosphido-Phosphor Übergangsmetall-substituierte Phosphane, Arsane und Stibane, 65¹

Wolfgang Malisch *, Norbert Gunzelmann, Katharina Thirase, Michael Neumayer

Instiut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Eingegangen am 12 Mai 1998

Abstract

The inversion barriers of dicarbonyl(cyclopentadienyl)ferrio-phosphanes are determined using chirally modified cyclopentadienyl-ligands. Synthesis is achieved by deprotonation of the cationic primary or secondary phosphane iron complexes $\{R^*C_5H_n(OC)_2[H(R)(Mes)P]Fe\}BF_4$ (R = H, Ph; R* = NM = Neomenthyl; n = 4; R = H; R* = Pi = Pinen-fused; n = 3) (4a-c) with KO'Bu to give $R^*C_5H_n(OC)_2Fe-P(Mes)R$ (R* = NM, Pi; R = H, Ph) (6a-c). Reaction of 6a with MeI yields $\{NMC_5H_4(OC)_2[H(Me)(Mes)P]Fe\}I$ (8), which is converted with KO'Bu to $NMC_5H_4(OC)_2Fe-P(Mes)Me$ (9). The inversion barrier of the ferrio-phosphanes is determined by NMR-spectroscopy to be 17.3 (6a), 16.4 (6b), 18.0 (6c) and > 16.8 (9) kcal mol⁻¹. © 1998 Elsevier Science S.A. All rights reserved.

Schlüsselwörter: Ferrio-phosphane; Inversion barrier; Chiral auxiliary; Primary and secondary phosphane complexes

1. Einleitung

Phosphorverbindungen des Typs PR_3 mit pyramidaler Struktur waren in der Vergangenheit häufig Gegenstand von Untersuchungen zur experimentellen oder theoretischen Bestimmung der Inversionsbarriere am Phosphor [2]. Dabei wurde ein Substituenten-abhängiger Einfluß auf die Höhe der Inversionsbarrieren nachgewiesen, der in wachsenden Werten mit steigender Elektronegativität der Substituenten zum Ausdruck kommt [2]. Der Einfluß von Übergangsmetall-Substituenten in Phosphanen des Typs L_nM-PR_2 [3,4] fand vergleichsweise wenig Beachtung, obwohl deren hohe Nukleophilie inzwischen die Grundlage einer umfangreichen Chemie bildet [3,4].

So sind Inversionsbarrieren bisher lediglich von Metallo-phosphanen experimentell erfaßt, die durch mindestens einen zweiten Phosphordonor stabilisiert sind. Nach der erstmaligen experimentellen Bestimmung einer Inversionsbarriere am Wolframio-phosphan $C_5H_5(Me_3P)(OC)_2W-P(^{i}Pr)_2$ (14.4 kcal mol⁻¹) [4] wur-Folge den in der u. a. die Komplexe $C_5H_5(Ph_3P)(ON)Re-PR_2$ [PR₂ = P(H)Ph (11.5 kcal mol^{-1}); P(pTol)₂ (13.0 kcal mol^{-1}) [5], C₅H₅[1,2- $C_{6}H_{4}-(MePhP)_{2}Fe-P(R)Ph [R = H (14.4 \text{ kcal mol}^{-1}),$ Me (14.1 kcal mol^{-1}] [6] und $(C_5H_5)_2Zr$ $(Cl)[P(H)(2,4,6-^{t}Bu_{3}C_{6}H_{2})]$ (14.2 kcal mol⁻¹) [7] studiert.

In neueren Arbeiten wurden Berechnungen zu Dicarbonyl(cyclopentadienyl)ferrio-phosphanen [8], einer von uns intensiv bearbeiteten Substanzklasse, auf der Basis

^{*} Corresponding author. Tel.: +49 931 8885277; fax: +49 931 8884618; e-mail: Wolfgang.Malisch@mail.uni-wuerzberg.de

¹ 64. Mitteilung: siehe Lit. Malisch et al. [1].

Tabelle 1

Experimentell bestimmte und berechnete Inversionsbarrieren von Dicarbonyl-(cyclopentadienyl)ferrio-phosphanen

Ferrio-phosphan	Inversionsbarriere (kcal mol ⁻¹)	Bestimmung
$\overline{\text{NMC}_{5}\text{H}_{4}(\text{OC})_{2}\text{Fe}-P(\text{H})\text{Mes}}$ (6a)	17.3	Exp.
$NMC_5H_4(OC)_2Fe-P(Ph)Mes$ (6b)	16.4	Exp.
$PiC_5H_3(OC)_2Fe-P(H)Mes$ (6c)	18.0	Exp.
$NMC_5H_4(OC)_2Fe-P(Me)Mes$ (9)	>16.8	Exp.
C ₅ H ₅ (OC) ₂ Fe–PH ₂	17.8	Theor.
$C_5H_5(OC)_2Fe-P(CH_3)_2$	20.5	Theor.
$C_5H_5(OC)_2Fe-P(CF_3)_2$	23.0	Theor.
C ₅ H ₅ (OC) ₂ Fe–PPh ₂	15.8	Theor.
$C_5H_5(OC)_2Fe-P(H)Ph$	16.4	Theor.

der PRDDO-Methode [9] (Partial Retention of Diatomic Differential Overlap) vorgestellt (Tabelle 1) [10], was der Anlaß war, entsprechende, möglichst gleichartige, diastereomere und damit für dynamische NMR-Studien geeignete Komplexe zu synthetisieren. Sie enthalten ein stereogenes Phosphorzentrum und eine am Cyclopentadienylliganden fixierte optisch aktive Hilfsgruppe.

2. Ergebnisse

Zur Darstellung der für eine Bestimmung der Inversionsbarriere am Phosphor geeigneten diastereomeren Ferrio-phosphane $NMC_5H_4(OC)_2Fe-PR^1R^2$ und $PiC_5H_3(OC)_2Fe-PR^1R^2$ wurde auf das Prinzip der Deprotonierung entsprechender kationischer primär oder sekundär Phosphan-substituierter Eisenkomplexe des Typs $\{C_5H_5(CO)_2[R^1(R^2)(H)P]Fe\}^{\oplus}$ [11] mittels KO'Bu zurückgegriffen.

Ausgangspunkt sind dabei die chiral modifizierten, kationischen Tricarbonyl-cyclopentadienyl-Eisenkomplexe **2a,b**, die in Anlehnung an die Darstellung des analogen achiralen Cp-Vertreters [11] aus den zweikernigen Eisenkomplexen $[R^*C_5H_n(OC)_2Fe]_2$ ($R^* =$ NM, n = 4; $R^* = Pi$, n = 3) [12] zugänglich sind.

Erhitzen der in Acetonitril gelösten, chiral modifizierten Eisenkationen **2a,b** in Gegenwart des primären Phosphans **3a** bzw. des sekundären Phosphans **3b** auf $50-55^{\circ}$ C führt innerhalb von drei bis fünf Tagen unter CO-Eliminierung zur Bildung der Phosphan-substituierten Eisenkomplexe **4a-c** in Ausbeuten um 90% in Form beigefarbener bis gelber lichtempfindlicher Pulver (Schema 1).

Ihre Kristallisationstendenz ist durch den chiralen organischen Substituenten gegenüber den Cp-analogen Eisenkationen [11] deutlich herabgesetzt. Die $J(^{31}P)$ -Werte liegen mit ca. -60.2 (**4a**), -2.2/-3.0 (**4b**) und -57.8 ppm (**4c**) in den erwarteten Bereichen [11].

Die weitere Umsetzung von 4a-c mit KO'Bu (5) bei - 78°C in Toluol führt nach Erwärmen auf Raumtemperatur zu den Ferrio-phosphanen 6a-c in Ausbeuten von 62 bis 71%. Sie werden-wie auch 4b-als Gemisch aus zwei miteinander im Gleichgewicht stehenden Epimeren im aus den ¹H-NMR-Daten ermittelbaren Verhältnis von 1:1 isoliert. Die ³¹P-NMR-Resonanzen (-127.5/-128.6 (6a); -26.5/-24.2 (6b); -102.6/-116.3 ppm (6c)) liegen im Vergleich zu denen der entsprechenden Kationen 4a-c bei höherem Feld.

Zur Erzeugung eines weiteren, Neomenthylcyclopentadienyl-substituierten Ferrio-phosphans mit unterschiedlichen Nichtmetall-Liganden am Phosphor wird der PH-funktionelle Vertreter **6a** durch Quaternisierung mit Methyliodid (7) in Pentan zum Komplexsalz **8** umgesetzt, welches seinerseits durch KO'Bu (5) unter den gleichen Bedingungen, die zu **6a-c**

Schema 1.

Schema 2.

führten, zum Metallo-phosphan **9** deprotoniert werden kann (Schema 2). Die ³¹P-NMR-Resonanzen der Stereoisomeren von **9** erscheinen im erwarteten Bereich (-45.4/-47.5 ppm) [11].

Die experimentelle Bestimmung der Inversionsbarrieren der Ferrio-phosphane **6a–c**, **9** erfolgte näherungsweise aus der Shiftdifferenz (siehe Experimentalteil) und der Koaleszenztemperatur [369 (**6a**); 361 (**6b**); 350 (**6c**); > 370 K (**9**)] der ³¹P-NMR-Resonanzen (**6a,b, 9**) bzw. des P-Methylsignals im ¹H-NMR (**6c**) nach der Eyring-Gleichung [13].

Ein Vergleich der experimentellen und berechneten Werte (Tabelle 1) ergibt sehr gute Übereinstimmung vor allem in Bezug auf 6a und $Cp(OC)_2Fe-P(H)Ph$ bzw. 6b und Cp(OC)₂Fe-PPh₂. Auch die Tendenz innerhalb der untersuchten Reihe, mit dem niedrigsten Wert für den Mesityl(phenyl)phosphido-Komplex 6b, dessen planarer Übergangszustand bei der Inversion sowohl sterisch als auch elektronisch (Mesomerie) die größte Stabilisierung erfahren sollte, entspricht der Erwartung. Ein Effekt des chiralen Auxiliars auf die dynamischen Vorgänge wird durch die fast identischen Inversionsbarrieren von 6a und 6c ausgeschlossen. Eine genaue Bestimmung des Wertes für 9 war aufgrund thermischer Zersetzung vor Erreichen des Koaleszenzpunktes nicht durchführbar. Insgesamt liegen die Werte der Dicarbonyl(cyclopentadienyl)ferrio-phosphane 6a-c, 9 höher als die der einleitend vorgestellten Phosphan-substituierten Vertreter [6].

3. Experimentalteil

Alle Arbeitsvorgänge wurden in einer Atmosphäre von nachgereinigtem Stickstoff durchgeführt. Die Lösungsmittel wurden zur Trocknung über LiAlH₄ (*n*-Pentan, Diethylether), über P_2O_5 (Acetonitril) bzw. Na/K-Legierung (Toluol) zum Sieden erhitzt und unter Inertgasatmosphäre destilliert und aufbewahrt.-¹H-NMR: Bruker AMX 400 (Restprotonen des jeweiligen Solvens als interner Standard).—¹³C-NMR: Bruker AMX 400 (¹³C-Signal des jeweiligen Solvens als interner Standard).—³¹P-NMR: Bruker AMX 400 (85%ige H₃PO₄ als externer Standard).—IR: Gitterspektrometer Perkin Elmer, Modell 283.-Schmelzpunkte: Differentielle Thermoanalyse (DTA); Thermal Analysis System Du Pont 9000.—Elementaranalysen wurden im hiesigen Institut nach dem mikrochemischen Verfahren durchgeführt (Abb. 1).

3.1. Tricarbonyl[$\eta^{5}(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl)eisen(II)]-tetrafluoroborat (2a)$

4.12 g (6.50 mmol) $[NMC_5H_4(OC)_2Fe]_2$ (1a) werden nach Lösen in 9.48 g (72.9 mmol) Propionsäureanhydrid bei 0°C mit 2.30 g (13.0 mmol) einer 50%-igen Lösung von Tetrafluoroborsäure in Wasser versetzt. Die Reaktionslösung wird 3 h auf 160°C erhitzt und 2a nach Abkühlen auf Raumtemperatur durch Zugabe von 30 ml Diethylether gefällt. 2a wird abgetrennt und 20 ml Acetonitril/Diethylether aus (1:3)umkristallisiert.—Ausb.: 3.04 g (54%).—Hellgelbes Kristallpulver.—Schmp. $137^{\circ}C.$ – ¹H-NMR (400.1)MHz, $[D_3]$ -Acetonitril): $\delta = 6.03$ (m, 1 H, H_4C_5), 5.77 $(m, 1 H, H_4C_5), 5.67 (m, 1 H, H_4C_5), 5.52 (m, 1 H, H_4C_5)$ H_4C_5), 3.00 (m, 1 H, H-6), 0.92 [d, ${}^{3}J(HCCH) = 6.0$ Hz, 3 H, H₃C], 0.89 [d, ${}^{3}J(\text{HCCH}) = 6.0$ Hz, 3 H, H₃C], 0.78 [d, ${}^{3}J(\text{HCCH}) = 6.0$ Hz, 3 H, H₃C], 1.95– 0.76 ppm (m, 9 H, H_9C_7).—¹³C-NMR (100.6 MHz, [D₃]-Acetonitril): $\delta = 203.6$ (CO), 117.8 (C-1), 94.4, 93.5, 89.2, 86.4, (C-2-C-5), 48.5 (C-7), 44.0 (C-11), 35.9 (C-6), 35.3 (C-9), 30.2 (C-10), 28.3 (C-12), 24.8 (C-8), 22.3, 22.0, 20.8 (C-13-C-15).—IR (Acetonitril): v(CO) = 2115 (vs), 2068 (vs) cm⁻¹.—Ber. für C₁₈H₂₃BF₄FeO₃ (430.03): C 50.28, H 5.39; Gef. C 49.99, H 5.46.

3.2. [Tricarbonyl(η⁵-(9,9)-dimethyltricyclo [6.1.1.0]deca-2,5-dienyl)eisen(II)]tetrafluoroborat (2b)

Wie für **2a** beschrieben aus 2.08 g (3.84 mmol) $[PiC_5H_3(OC)_2Fe]_2$ (**1a**), 5.62 g (43.0 mmol) Propionsäureanhydrid und 1.37 g (7.65 mmol) einer 50%igen Lösung von Tetrafluoroborsäure in Wasser nach 5 h bei 160°C und Umkristallisation aus 20 ml Acetoni-

Abb. 1. Numerierung der Atome im Neomenthyl-substituierten bzw. Pinen-annellierten Cyclopentadienylliganden.

tril/Diethylether (1:5).—Ausb.: 0.86 g (58%).— Hellgelbes Kristallpulver.—Schmp. 166°C.-¹H-NMR (400.1 MHz, [D₃]-Acetonitril): $\delta = 5.78$ [t, ${}^{3}J(H^{3}H^{4}) =$ ${}^{3}J(\mathrm{H}^{5}\mathrm{H}^{4}) = 2.6 \mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}_{3}\mathrm{C}_{5}]; 5.30 \mathrm{(m, 1 H, H}^{3}, \mathrm{H}^{3})$ H_3C_5 ; 5.25 (m, 1 H, H^5 , H_3C_5); 2.87 [dt, ${}^{2}J(\mathrm{H}^{10}\mathrm{H}^{10'}) = 10.7$ Hz, ${}^{3}J(\mathrm{H}^{1}\mathrm{H}^{10/10'}) = {}^{3}J(\mathrm{H}^{8}\mathrm{H}^{10/10'}) =$ 6.1 Hz, 1 H, $H^{10/10'}$, $H_{15}C_{12}$; 2.70 [t, ${}^{3}J(H^{10/10'}H^{1}) =$ ${}^{4}J(\mathrm{H}^{8}\mathrm{H}^{1}) = 5.5 \text{ Hz}, 1 \text{ H}, \mathrm{H}^{1}, \mathrm{H}_{15}\mathrm{C}_{12}]; 2.70 \text{ (dd,}$ ${}^{2}J(\mathrm{H}^{7/7'}\mathrm{H}^{7'/7}) = 19.0 \mathrm{Hz}, \, {}^{3}J(\mathrm{H}^{8}\mathrm{H}^{7'/7}) = 2.8 \mathrm{Hz}, \, 1 \mathrm{H}, \, \mathrm{H}\text{-}7/$ 7', $H_{15}C_{12}$; 2.66 (dd, ${}^{2}J(H^{7/7'}H^{7'/7}) = 19.0 Hz, {}^{3}J$ $(H^8H^{7'/7}) = 2.8$ Hz, 1 H, H-7/7', H₁₅C₁₂); 2.27 [tt, ${}^{3}J(\mathrm{H}^{10/10'}\mathrm{H}^{8}) = {}^{4}J(\mathrm{H}^{1}\mathrm{H}^{8}) = 5.4 \mathrm{Hz}, \; {}^{3}J(\mathrm{H}^{7/7'}\mathrm{H}^{8}) = {}^{3}J(\mathrm{H}^{7'/7})$ H^{8}) = 2.8 Hz, 1 H, H⁸, H₁₅C₁₂]; 1.36 (s, 3 H, H₃C, $H_{15}C_{12}$; 1.24 [d, ${}^{2}J(H^{10'}H^{10}) = 10.7$ Hz, 1 H, $H^{10/10'}$, $H_{15}C_{12}$]; 0.66 ppm (s, 3 H, $H_{3}C$, $H_{15}C_{12}$).—¹³C-NMR (100.6 MHz, $[D_3]$ -Acetonitril): $\delta = 204.4$ (s, CO); 126.8 (s, C-2, C₅H₃); 111.4 (s, C-6, C₅H₃); 91.5 (s, C-4, C_5H_3 ; 82.2 (s, C-3, C-5, C_5H_3); 80.7 (s, C-3, C-5, C₅H₃); 42.0 (s, C-9, C₁₂H₁₅); 41.2 (s, C-8, C₁₂H₁₅); 40.7 (s, C-1, $C_{12}H_{15}$); 37.1 (s, C-10, $C_{12}H_{15}$); 26.4 (s, C-7, C₁₂H₁₅); 26.1 (s, C-11, C-12, C₁₂H₁₅); 21.6 ppm (s, C-11, C-12, $C_{12}H_{15}$).—IR (Dichlormethan): v(CO) = 2108 (s), 2060 (s) cm⁻¹.—Ber. für C₁₅H₁₅BF₄FeO₃ (385.93): C 46.68, H 3.92; Gef. C 45.61, H 4.06.

3.3. { $Dicarbonyl[\eta^{5}-(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl]-[(2,4,6-trimethyl-phenyl)phosphan]eisen(II)}tetrafluoroborat ($ **4a**)

Gemisch von 993 Ein mg (2.31 mmol) $[NMC_5H_4(OC)_3Fe]BF_4$ (2a) und 500 mg (3.29 mmol) MesPH₂ (3a) in 20 ml Acetonitril wird unter kräftigem Rühren 5 d auf 55°C erhitzt. Flüchtiges wird i. Vak. entfernt und überschüssiges 3a aus dem Rückstand durch fünfmaliges Waschen mit je 20 ml Pentan entfernt. Verbleibendes 4a wird 1 h bei 10^{-3} Torr getrocknet.—Ausb. 1.18 (92%).—Hellbeiges g Kristallpulver.—Schmp. $76^{\circ}C.$ – ¹H-NMR (400.1)MHz, CDCl₃): $\delta = 6.90$ [s, 2 H, $H_2C_6(CH_3)_3$]; 6.22 [d, ${}^{1}J(\text{HP}) = 407.5 \text{ Hz}, 1 \text{ H}, \text{ H}_{2}\text{P}; 6.20 \text{ [d, } {}^{1}J(\text{HP}) = 405.8$ Hz, 1 H, H₂P]; 5.63/5.54/5.48/5.44 (m, 4 H, H₄C₅); 2.87

(m, H-6, 1 H, H₁₉C₁₀); 2.40 (s, 6 H, o-H₃C); 2.24 (s, 3 H, p-H₃C); 0.90 [d, ${}^{3}J(\text{HCCH}) = 5.8$ Hz, 3 H, H₃C]; 0.85 [d, ${}^{3}J(\text{HCCH}) = 5.9$ Hz, 3 H, H₃C]; 0.74 [d, ${}^{3}J(\text{HCCH}) = 5.9 \text{ Hz}, 3 \text{ H}, \text{ H}_{3}\text{C}]; 1.86-0.73 \text{ ppm}$ (m, 9 H, H_9C_7).—¹³C-NMR (100.6 MHz, CDCl₃): $\delta = 209.1$ [d, ²J(PFeC) = 23.7 Hz, CO]; 142.2 [d, ${}^{4}J(\text{PCCCC}) = 2.1 \text{ Hz}, \text{ C-4}, C_{6}H_{2}(\text{CH}_{3})_{3}]; 140.7 \text{ [d,}$ ${}^{3}J(PCCC) = 8.6$ Hz, C-3, C-5, $C_{6}H_{2}(CH_{3})_{3}$; 130.1 [d, $^{2}J(PCC) = 9.00$ Hz, C-2, C-6, $C_{6}H_{2}(CH_{3})_{3}$; 117.4 [d, ${}^{1}J(PC) = 58.2$ Hz, C-1, $C_{6}H_{2}(CH_{3})_{3}$]; 111.9 (s, C-1, C₅H₄); 90.4/90.2/88.1/84.6 (s, C-2, C-3, C-4, C-5, C_5H_4 ; 47.9 (s, C-6, $C_{10}H_{19}$); 43.7 (s, C-11, $C_{10}H_{19}$); 35.4 (s, C-7, $C_{10}H_{19}$); 34.8 (s, C-9, $C_{10}H_{19}$); 29.5 (s, C-10, $C_{10}H_{19}$; 27.9 (s, C-12, $C_{10}H_{19}$); 24.2 (s, C-8, C₁₀H₁₉); 22.3/21.8/21.7/21.6/21.1/20.5 ppm (s, C-13, C-14, C-15, C₁₀H₁₉, *o*-CH₃, *p*-CH₃).—³¹P-NMR (162.0 MHz, CDCl₃): $\delta = -60.2$ ppm.—IR (Acetonitril): v(CO) = 2049 (s), 2005 (s) cm⁻¹.—Ber. für C₂₆H₃₆BF₄FeO₂P (554.20): C 56.35, H 6.55; Gef. C 56.51, H 6.74.

3.4. { $Dicarbonyl[\eta^{5}-(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl]-[phenyl-(2,4,6-trimethyl-phenyl)phosphan]eisen(II)}tetrafluoroborat (4b)$

Wie für 4a beschrieben aus 800 mg (1.86 mmol) $[NMC_5H_4(OC)_3Fe]BF_4$ (2a) und 500 mg (2.19 mmol) Mes(Ph)PH (3b) in 20 ml Acetonitril nach 4 d bei 55°C.—Ausb. 1.03 g (88%).—Hellbeiges Kristallpulver.—Schmp. 155°C (Zers.).—¹H-NMR (400.1 MHz, CD₃CN): $\delta = 7.74$ [d, ¹J(PH) = 399.4 Hz, 1 H, HP]; 7.73 [d, ${}^{1}J(PH) = 400.3$ Hz, 1 H, HP]; 7.69–7.58 (m, 10 H, H_5C_6P); 7.10 [s, 4 H, $H_2C_6(CH_3)_3$]; 5.90 (m, 2 H, H_4C_5 ; 5.79 (m, 1 H, H_4C_5); 5.64 (m, 1 H, H_4C_5); 5.35-5.20 (m, 4 H, H_4C_5); 3.07 (m, H-6, 1 H, NMH₄C₅); 3.02 (m, H-6, 1 H, NMH₄C₅); 2.29 (s, br, 12 H, $o-H_3C$; 1.00 [d, ${}^{3}J(HCCH) = 6.5$ Hz, 3 H, H_3C]; 0.96 [d, ${}^{3}J(HCCH) = 6.4$ Hz, 3 H, H_3C]; 0.93 [d, ${}^{3}J(\text{HCCH}) = 6.2 \text{ Hz}, 3 \text{ H}, \text{H}_{3}\text{C}; 0.92 \text{ [d, } {}^{3}J(\text{HCCH}) =$ 6.2 Hz, 3 H, H₃C]; 0.83 [d, ${}^{3}J(\text{HCCH}) = 6.6$ Hz, 3 H, H_3C]; 0.82 [d, ${}^{3}J(HCCH) = 6.5$ Hz, 3 H, H_3C]; 1.98– 0.66 ppm (m, 22 H, H_9C_7 , p- H_3C).—¹³C-NMR (100.6 MHz, CD₃CN): $\delta = 211.1$ [d, ²*J*(PFeC) = 24.0 Hz, CO]; 211.1 (d, ${}^{2}J(PFeC) = 23.1$ Hz, CO); 209.4 (d, $^{2}J(PFeC) = 23.3$ Hz, CO); 209.2 (d, $^{2}J(PFeC) = 22.8$ Hz, CO); 143.0/142.9 [d, ${}^{2}J(PCC) = 2.6$ Hz, C-2, C-6, $C_6H_2(CH_3)_3$; 142.1 [d, ²J(PCC) = 17.5 Hz, C-2, C-6, $C_6H_2(CH_3)_3$; 142.1 [d, ²J(PCC) = 17.2 Hz, C-2, C-6, $C_6H_2(CH_3)_3$; 141.2 [s, C-2, C-6, $C_6H_2(CH_3)_3$]; 133.4 [d, $^{2}J(PCC) = 11.1$ Hz, C-2, C-6, C₆H₅P]; 133.3 [d, $^{2}J(PCC) = 11.2$ Hz, C-2, C-6, C₆H₅P]; 132.3/132.2 (s, C-3, C-5, C_6H_5P ; 130.8 [s, C-4, $C_6H_2(CH_3)_3$]; 129.7 [d, ${}^{3}J(PCCC) = 1.1$ Hz, C-3, C-5, C₆H₅P]; 126.7/126.6/ 123.2 [d, ${}^{1}J(PC) = 51.2/50.9/55.3$ Hz, C-1, CP]; 112.5 123.2 [d, ${}^{1}J(PC) = 51.2/50.9/55.3$ Hz, C-1, CP]; 112.5 (s, C-1, C₅H₄); 112.1 (s, C-1, C₅H₄); 92.1/91.3/90.6/ 90.0/88.4/87.9/85.1/84.0 (s, C-2, C-3, C-4, C-5, C₅H₄); 47.9 (s, C-6, C₁₀H₁₉); 43.5/42.98 (s, C-11, C₁₀H₁₉); 35.3/35.2 (s, C-7, C₁₀H₁₉); 34.8/34.7 (s, C-9, C₁₀H₁₉); 29.5/29.4 (s, C-10, C₁₀H₁₉); 27.7/27.6 (s, C-12, C₁₀H₁₉); 24.1/24.0 (s, C-8, C₁₀H₁₉); 22.3/22.2/22.1/21.7/21.6/ 21.3/21.2/20.8/20.3/20.0/19.9 ppm (s, C-13, C-14, C-15, C₁₀H₁₉, *o*-CH₃, *p*-CH₃, CH₃C₆H₂).—³¹P-NMR (162.0 MHz, CD₃CN): $\delta = -2.2/-3.0$ ppm.—IR (Acetonitril): ν (CO) = 2046 (s), 2002 (s) cm⁻¹.—Ber. für C₃₂H₄₀BF₄FeO₂P (630.29): C 60.98, H 6.40; Gef. C 60.09, H 6.34.

3.5. [Dicarbonyl(η^{5} -(9,9)-dimethyltricyclo-[6.1.1.0]deca-2,5-dienyl)(2.4.6-trimethylphenyl-phosphan)eisen(II)]tetrafluoroborat (**4c**)

Eine Lösung von 380 mg (0.985 mmol) $[PiC_5H_3(OC)_3Fe]BF_4$ (2b) und 150 mg (0.985 mmol) MesPH₂ (3a) in 20 ml Acetonitril wird 3 Tage bei 50°C gerührt. Anschließend wird i. Vak. bis auf 2 ml engeengt und 4c durch Zugabe von 20 ml Ether gefällt. Zur weiteren Reinigung wird 4c nochmals in 2 ml Acetonitril gelöst, mit 20 ml Ether gefällt und nach Abtrennen i. Vak. getrocknet.-Ausb. 417 mg (83%).—Gelbes Kristallpulver.—Schmp. 154°C (Zers.).—¹H-NMR (400.1 MHz, [D₃]-Acetonitril): $\delta =$ 7.05 [d, ${}^{4}J(PCCCH) = 4.0$ Hz, 2 H, $\underline{H}_{2}C_{6}(CH_{3})_{3}$]; 5.93 $[dd, {}^{1}J(PH) = 396.1 Hz, {}^{2}J(HPH) = 3.6 Hz, 1 H, H_{2}P];$ 5.90 [dd, ${}^{1}J(PH) = 396.1$ Hz, ${}^{2}J(HPH) = 3.6$ Hz, 1 H, H_2P]; 5.34 (m, 1 H; H³, H⁴, H⁵, H_3C_5); 5.15 (m, 1 H, H^{3} , H^{4} , H^{5} , $H_{3}C_{5}$); 5.06 (m, 1 H, H^{3} , H^{4} , H^{5} , $H_{3}C_{5}$); 2.88 [dt, ${}^{2}J(H^{10}H^{10'}) = 10.4$ Hz, ${}^{3}J(H^{1}H^{10/10'}) =$ ${}^{4}J(\mathrm{H}^{8}\mathrm{H}^{10/10'}) = 6.0 \mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{10/10'}, \mathrm{H}_{15}\mathrm{C}_{12}]; 2.70-2.67$ (m, 3 H, $H^{7/7'}$, $H^{7'/7}$, H^1 , $H_{15}C_{12}$); 2.41 (s, 6 H, *o*-CH₃, (H₃C)₃C₆H₂); 2.29 (m, 1 H, H⁸, H₁₅C₁₂); 2.28 (s, 3 H, *p*-CH₃, (H₃C)₃C₆H₂); 1.41 (s, 3 H, H₃C, H₁₅C₁₂); 1.35 $[d, {}^{2}J(H^{10'}H^{10}) = 10.4 \text{ Hz}, 1 \text{ H}, H^{10'/10}, H_{15}C_{12}]; 0.72$ ppm (s, 3 H, H₃C, H₁₅C₁₂).—¹³C-NMR (100.6 MHz, [D₃]-Acetonitril): $\delta = 211.0$ [d, ²J(PFeC) = 23.1 Hz, CO]; 210.5 [d, ${}^{2}J(PFeC) = 22.1$ Hz, CO]; 143.2 [s, C-4, $C_6H_2(CH_3)_3$; 141.6 [d, ²J(PCC) = 8.1 Hz, C-2, C-6, $C_6H_2(CH_3)_3$]; 130.7 [d, ${}^{3}J(PCCC) = 8.1$ Hz, C-3, C-5, $C_6H_2(CH_3)_3$; 121.34 (s, C-2, C_5H_3); 121.28 [d, ${}^{1}J(PC) = 52.34$ Hz, C-1, $C_{6}H_{2}(CH_{3})_{3}$]; 106.6 (s, C-6, C_5H_3 ; 91.2 (s, C-4, C_5H_3); 80.6 (s, C-3, C-5, C_5H_3); 78.5 (s, C-3, C-5, C₅H₃); 41.8 (s, C-9, C₁₂H₁₅); 41.4 (s, C-8, $C_{12}H_{15}$); 40.4 (s, C-1, $C_{12}H_{15}$); 36.7 (s, C-10, C₁₂H₁₅); 26.2 (s, C-11, C-12, C₁₂H₁₅); 25.9 (s, C-7, $C_{12}H_{15}$; 21.8 (s, C-11, C-12, $C_{12}H_{15}$); 21.6 [d, ${}^{3}J(PCCC) = 12.6$ Hz, o-CH₃, (H₃C)₃C₆H₂]; 20.9 ppm [s, p-CH₃, (H₃C)₃C₆H₂].—³¹P-NMR (162.0 MHz, [D₃]-Acetonitril): $\delta = -57.8$ ppm.—IR (Acetonitril): v(CO) = 2045 (s), 2002 (s) cm⁻¹.—Ber. für C₂₃H₂₈BF₄FeO₂P (510.10): C 54.16, H 5.53; Gef. C 55.29, H 5.27.

3.6. { $Dicarbonyl[\eta^{5}(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl]ferrio$ }-2,4,6-trimethyl-phenyl-phosphan (**6a**)

Eine Suspension von 140 mg (0.253 mmol) {NMC₅H₄(OC)₂[H₂(Mes)P]Fe}BF₄ (4a) in 10 ml Toluol wird bei - 78°C unter Rühren mit 30 mg (0.267 mmol) Kalium-tert.-butylat (5) versetzt. Nach 1 h wird die Reaktionsmischung auf Raumtemperatur erwärmt, Unlösliches wird abfiltriert und Flüchtiges i.Vak. entfernt, wobei analysenreines 6a verbleibt.-Ausb. 81 mg (69%).—Rotes $\ddot{O}l.$ —¹H-NMR (400.1 MHz, [D₆]-Benzol): $\delta = 6.79$ [s, 4 H, $H_2C_6(CH_3)_3$]; 4.61 (m, 1 H, H_4C_5); 4.48 (m, 2 H, H_4C_5); 4.34 (m, 1 H, H_4C_5); 4.24 (m, 2 H, H_4C_5); 4.21 (m, 1 H, H_4C_5); 4.17 (m, 1 H, H_4C_5); 3.70 [d, ${}^1J(PH) = 173.66$ Hz, 1 H, HP]; 3.69 [d, ${}^{1}J(PH) = 173.26$ Hz, 1 H, HP]; 2.68 (m, 1 H, H⁶, $H_{19}C_{10}$); 2.59 (m, 1 H, H⁶, $H_{19}C_{10}$); 2.56 [s, 12 H, o-CH₃, (H₃C)₃C₆H₂]; 2.11 [s, 6 H, p-CH₃, $(H_3C)_3C_6H_2$; 1.98 (m, 2 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.67 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$; 1.64 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $\begin{array}{c} H_{19}C_{10}); \ 1.60-1.48 \ (m, \ 1 \ H, \ H^{9/9'}, \ H^{11/11'}, \ H^{8/8'}, \ H^{12}, \\ H_{19}C_{10}); \ 1.46-1.44 \ (m, \ 2 \ H, \ H^{9/9'}, \ H^{11/11'}, \ H^{8/8'}, \ H^{12}, \end{array}$ $H_{19}C_{10}$; 1.33 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$; 1.21–1.14 (m, 2 H, $H^{11/11'}$, $H_{19}C_{10}$); 1.10–1.04 $(m, 2 H, H^{10}, H_{19}C_{10}); 0.98-0.85 (m, 2 H, H^{8/8'})$ $H_{19}C_{10}$; 0.93–0.91 (m, 2 H, H⁷, $H_{19}C_{10}$); 0.89 [d, ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{13}, \text{H}_{19}\text{C}_{10}]; 0.89 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, H^{13}, H_{19}C_{10}]; 0.89$ [d, ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{15}, \text{H}_{19}\text{C}_{10}]; 0.89$ [d, ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}{}^{15}, \text{H}{}_{19}\text{C}{}_{10}]; 0.89 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{14}, \text{H}_{19}\text{C}_{10}]; 0.89 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}{}^{14}, \text{H}{}_{19}\text{C}{}_{10}].$ – ${}^{13}\text{C-NMR}$ (100.6 MHz, [D₆]-Benzol): $\delta = 225.9$ [d, ²J(CFeP) = 24.15 Hz, CO]; 217.7 [d, ${}^{2}J(CFeP) = 23.14$ Hz, CO]; 217.5 [d, ${}^{2}J(PFeC) = 23.85$ Hz, CO]; 142.5 [d, ${}^{2}J(PCC) = 12.07$ Hz, C-2, C-6, $C_{6}H_{2}(CH_{3})_{3}$]; 142.4 [d, $^{2}J(PCC) = 12.07$ Hz, C-2, C-6, $C_{6}H_{2}(CH_{3})_{3}$; 136.1 [s, C-4, $C_6H_2(CH_3)_3$; 129.6 [d, ${}^{3}J(PCCC) = 7.65$ Hz, C-3, C-5, $C_6H_2(CH_3)_3$]; 125.6 (s, C-1, C_5H_4); 107.7 [d, ${}^{1}J(PC) = 54.68$ Hz, C-1, $C_{6}H_{2}(CH_{3})_{3}$; 92.6 (s, C-2, C-3, C-4, C-5, C₅H₄); 91.6 (s, C-2, C-3, C-4, C-5, C₅H₄); 88.2 (s, C-2, C-3, C-4, C-5, C₅H₄); 87.6 (s, C-2, C-3, C-4, C-5, C₅H₄); 85.1 (s, C-2, C-3, C-4, C-5, C₅H₄); 84.6 (s, C-2, C-3, C-4, C-5, C₅H₄); 81.8 (s, C-2, C-3, C-4, C-5, C_5H_4 ; 81.4 (s, C-2, C-3, C-4, C-5, C_5H_4 ; 48.1 (s, C-7, $C_{10}H_{19}$); 48.0 (s, C-7, $C_{10}H_{19}$); 44.0 (s, C-11, C₁₀H₁₉); 43.8 (s, C-11, C₁₀H₁₉); 35.8 (s, C-6, $C_{10}H_{19}$); 35.8 (s, C-6, $C_{10}H_{19}$); 35.6 (s, C-9, $C_{10}H_{19}$); 35.5 (s, C-9, $C_{10}H_{19}$); 29.7 (s, C-10, $C_{10}H_{19}$); 29.6 (s, C-10, $C_{10}H_{19}$; 28.0 (s, C-12, $C_{10}H_{19}$); 28.0 (s, C-12,

C-10, $C_{10}H_{19}$); 28.0 (s, C-12, $C_{10}H_{19}$); 28.0 (s, C-12, $C_{10}H_{19}$); 24.6 (s, C-8, $C_{10}H_{19}$); 24.5 (s, C-8, $C_{10}H_{19}$); 23.8 [d, ³*J*(PCCC) = 11.06 Hz, *o*-CH₃, (CH₃)₃C₆H₂]; 23.0, 22.9, 22.7, 22.6, 22.1, 21.9, 21.1, 21.0, 20.6 ppm [s, C-13, C-14, C-15, $C_{10}H_{19}$, *p*-CH₃, (CH₃)₃C₆H₂].—³¹P-NMR (162.0 MHz, [D₆]-Benzol): $\delta = -127.5$, -128.6 ppm.—IR (Pentan): ν (CO) = 2000 (s), 1959 (vs) cm⁻¹.—Ber. für C₂₆H₃₅FeO₂P (640.48): C 66.96, H 7.56; Gef. C 67.44, H 6.69.

3.7. { $Dicarbonyl[\eta^{5}(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl]ferrio}-[(2,4,6-trimethyl-phenyl)(phenyl)phosphan] ($ **6b**)

Wie für 6a beschrieben aus 100 mg (0.158 mmol) $\{NMC_5H_4(OC)_2[H(Ph)(Mes)P]Fe\}BF_4$ (4b) und 18 mg (0.158 mmol) Kalium-tert.-butylat (5) in 10 ml Toluol.—Ausb. 61 mg (71%).—Violettes Öl.—¹H-NMR (400.1 MHz, $[D_s]$ -Toluol): $\delta = 7.65 - 7.09$ (m, 10 H, H₅C₆P); 6.98 [s, 4 H, H₂C₆(CH₃)₃]; 4.76 (m, 2 H, H_4C_5 ; 4.71 (m, 2 H, H_4C_5); 4.48 (m, 4 H, H_4C_5); 2.85 (m, 1 H, H^6 , $H_{19}C_{10}$); 2.73 (m, 1 H, H^6 , $H_{19}C_{10}$; 2.65 [s, 12 H, o-CH₃, (H₃C)₃C₆H₂]; 2.10–1.21 $[m, 22 H, p-CH_3, (H_3C)_3C_6H_2, H_9C_7]; 0.99 [d,$ 0.92 ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 6 \text{ H}, \text{ H}_{3}\text{C};$ [d, ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 6 \text{ H}, \text{H}_{3}\text{C}]; 0.76 \text{ ppm} [d],$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 6 \text{ H}, \text{H}_{3}\text{C}].-{}^{31}\text{P-NMR}$ (162.0 MHz, $[D_8]$ -Toluol): $\delta = -26.5, -24.2$ ppm.—IR (Toluol): v(CO) = 2000 (s), 1960 (vs) cm⁻¹.—Ber. für C₃₂H₃₉FeO₂P (542.48): C 70.85, H 7.25; Gef. C 71.12, H 7.83.

3.8. [Dicarbonyl(η^{5} -(9,9)-dimethyltricyclo[6.1.1.0] deca-2,5-dienyl)ferrio]-[2.4.6-trimethyl-phenylphosphan] (**6c**)

Wie für **6a** beschrieben aus 150 mg (0.294 mmol) $[PiC_5H_3(OC)_2FeP(H)_2Mes]BF_4$ (4c) und 34 mg (0.303) mmol) Kalium-tert.-butylat (5) in 10 ml Toluol.-Ausb. 77 mg (62%).—Rotes $\ddot{O}l.$ —¹H-NMR (400.1 MHz, [D₆]-Benzol): $\delta = 6.88$ [s, 4 H, $H_2C_6(CH_3)_3$]; 4.29-4.25 (m, 2 H, H³, H⁴, H⁵, H₃C₅); 4.15-4.10 (m, 1 H, H³, H⁴, H⁵, H₃C₅); 3.98-3.96 (m, 2 H, H³, H⁴, H⁵, H₃C₅); 3.94 [d, ${}^{1}J(PH) = 174.46$ Hz, 1 H, HP]; 3.79 (m, 1 H, H³, H⁴, H⁵, H₃C₅); 3.77 [d, ${}^{1}J(PH) =$ 171.26 Hz, 1 H, HP]; 2.92 (m, 1 H, $H^{10/10'}$, $H_{15}C_{12}$); 2.89 (m, 1 H, H^{10/10'}, H₁₅C₁₂); 2.66 [s, 6 H, *p*-CH₃, (H₃C)₃C₆H₂]; 2.61 [s, 12 H, *o*-CH₃, (H₃C)₃C₆H₂]; 2.51-2.17 (m, 3 H, H¹, H^{7/7'}, H⁸); 2.07-1.13 (m, 3 H, H¹, H^{7/7'}, H⁸); 1.75 [d, ${}^{2}J(H^{10/10'}H^{10'/10}) = 10.0$ Hz, 1 H, $H^{10'/10}$, $H_{15}C_{12}$]; 1.49 [d, ${}^{2}J(H^{10/10'}H^{10'/10}) = 9.60$ Hz, 1 H, $H^{10'/10}$, $H_{15}C_{12}$]; 1.05 (s, 3 H, H_3C , $H_{15}C_{12}$); 1.04 (s, 3 H, H_3C , $H_{15}C_{12}$); 0.45 (s, 3 H, H_3C , $H_{15}C_{12}$); 0.42 ppm (s, 3 H, H_3C , $H_{15}C_{12}$).—¹³C-NMR (100.6 MHz, $[D_3]$ -Acetonitril): $\delta = 217.9$ (s, br, CO); 215.7 (s, br, CO); 215.3 (s, br, CO); 142.3 [d, ${}^{2}J(PCC) = 13.1$ Hz, C-2, C-6, $C_6H_2(CH_3)_3$]; 136.0 [s, C-4, $C_6H_2(CH_3)_3$; 135.9 [s, C-4, $C_6H_2(CH_3)_3$]; 127.5 [d, ${}^{3}J(PCCC) = 10.1$ Hz, C-3, C-5, $C_{6}H_{2}(CH_{3})_{3}$; 116.4 (s, C-2, C-6, C₅H₃); 114.7 (s, C-2, C-6, C₅H₃); 104.5 (s, C-2, C-6, C₅H₃); 101.2 (s, C-2, C-6, C₅H₃); 87.7 (s, C-3, C-4, C-5, C₅H₃); 85.6 (s, C-3, C-4, C-5, C₅H₃); 79.2 (s, C-3, C-4, C-5, C₅H₃); 77.0 (s, C-3, C-4, C-5, C₅H₃); 76.7 (s, C-3, C-4, C-5, C₅H₃); 75.5 (s, C-3, C-4, C-5, C₅H₃); 42.0 (s, C-9, C₁₂H₁₅); 41.7 (s, C-8, C-1, C₁₂H₁₅); 41.6 (s, C-8, C-1, C₁₂H₁₅); 40.8 (s, C-8, C-1, C₁₂H₁₅); 39.4 (s, C-8, C-1, C₁₂H₁₅); 35.9 (s, C-10, $C_{12}H_{15}$; 35.6 (s, C-10, $C_{12}H_{15}$); 26.5 (s, C-7, $C_{12}H_{15}$); 26.4 (s, C-7, C₁₂H₁₅); 24.7 [s, C-11, C-12, C₁₂H₁₅, o-CH₃, p-CH₃, (H₃C)₃C₆H₂]; 24.3 [s, C-11, C-12, C₁₂H₁₅, *o*-CH₃, *p*-CH₃, (H₃C)₃C₆H₂]; 24.0 [s, C-11, C-12, C₁₂H₁₅, o-CH₃, p-CH₃, (H₃C)₃C₆H₂]; 23.9 [s, C-11, C-12, C₁₂H₁₅, *o*-CH₃, *p*-CH₃, (H₃C)₃C₆H₂]; 23.5 [s, C-11, C-12, C₁₂H₁₅, o-CH₃, p-CH₃, (H₃C)₃C₆H₂]; 21.4 [s, C-11, C-12, C₁₂H₁₅, o-CH₃, p-CH₃, (H₃C)₃C₆H₂]; 21.2 ppm [s, C-11, C-12, C₁₂H₁₅, *o*-CH₃, $p-CH_3$, $(H_3C)_3C_6H_2$]-³¹P-NMR (162.0 MHz, [D₃]-Acetonitril): $\delta = -102.6$, -116.3 ppm.—IR (Acetonitril): v(CO) = 1997 (s); 1948 (s) cm⁻¹.—Ber. für C₂₃H₂₇FeO₂P (422.29): C 65.42, H 6.44; Gef. C 64.88, H 6.01.

3.9. { $Dicarbonyl[\eta^{5}(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl][2,4,6-trimethyl-phenyl-(methyl)phosphan]eisen(II)}iodid (8)$

Eine Lösung von 98 mg (0.210 mmol) NMC₅H₄(OC)₂Fe-P(H)Mes (6a) in 10 ml Pentan wird bei -78° C tropfenweise mit 30 mg (0.211 mmol) Methyliodid (7) versetzt und innerhalb 1 h auf Raumtemperatur erwärmt. Der entstandene gelbe Niederschlag wird abgetrennt, zweimal mit je 5 ml Pentan gewaschen und i. Vak. getrocknet.-Ausb. 101 mg (79%).—Gelbes Pulver.—Schmp. 99°C.—¹H-NMR (400.1 MHz, $[D_3]$ -Acetonitril): $\delta = 7.11$ [dq, ${}^{1}J(PH) = 403.70$ Hz, ${}^{3}J(HCPH) = 6.4$ Hz, 1 H, HP]; 7.07 [dq, ${}^{1}J(PH) = 397.7$ Hz, ${}^{3}J(HCPH) = 6.4$ Hz, 1 H, HP]; 7.02 [d, ${}^{4}J(PCCCH) = 3.60$ Hz, 4 H, $H_2C_6(CH_3)_3$; 5.75 (m, 1 H, H_4C_5); 5.71 (m, 1 H, H_4C_5 ; 5.52 (m, 1 H, H_4C_5); 5.50 (m, 1 H, H_4C_5); 5.32 (m, 1 H, H_4C_5); 5.27–5.24 (m, 2 H, H_4C_5); 5.15 (m, 1 H, H_4C_5); 2.92 (m, 2 H, H^6 , $H_{19}C_{10}$); 2.46 [s, 12 H, o-CH₃, (H₃C)₃C₆H₂]; 2.27 [s, 6 H, p-CH₃, 2.01 [dd, $^{2}J(\text{PCH}) = 11.60$ $(H_{3}C)_{3}C_{6}H_{2}];$ Hz, ${}^{3}J(\text{HPCH}) = 6.40 \text{ Hz}, 6 \text{ H}, (\text{H}_{3}\text{C})\text{P}]; 1.82-1.75 \text{ (m, 4)}$ H, $H^{9/9'}$, $H^{11/11'}$, $H_{19}C_{10}$); 1.69–1.68 (m, 2 H, $H^{8/8'}$, $H_{19}C_{10}$; 1.67–1.65 (m, 2 H, H^{12} , $H_{19}C_{10}$); 1.53–1.45 (m, 2 H, $H^{11/11'}$, $H_{19}C_{10}$); 1.35–1.28 (m, 2 H, $H^{10/10'}$,

(m, 2 H, $H^{11/11'}$, $H_{19}C_{10}$); 1.35–1.28 (m, 2 H, $H^{10/10'}$, $H_{19}C_{10}$; 1.28–1.21 (m, 2 H, H⁷, $H_{19}C_{10}$); 1.18–1.07 (m, 2 H, $H^{8/8'}$, $H_{19}C_{10}$; 0.99–0.92 (m, 2 H, $H^{9/9'}$, $H_{19}C_{10}$); $0.90 \text{ [d, } {}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{13}, \text{H}_{19}\text{C}_{10}\text{]}; 0.89 \text{ [d,}$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{13}, \text{H}_{19}C_{10}]; 0.86 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{15}, \text{H}_{19}\text{C}_{10}]; 0.85 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{15}, \text{H}_{19}C_{10}]; 0.75 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.8 \text{ Hz}, 3 \text{ H}, \text{H}^{14}, \text{H}_{19}\text{C}_{10}]; 0.74 \text{ [d},$ ${}^{3}J(\text{HCCH}) = 6.4 \text{ Hz}, 3 \text{ H}, \text{H}^{14}, \text{H}_{19}\text{C}_{10}].$ — ${}^{13}\text{C-NMR}$ (100.6 MHz, [D₃]-Acetonitril): $\delta = 211.5$ [d. ${}^{2}J(PFeC) = 24.15$ Hz, CO]; 211.4 [d, ${}^{2}J(PFeC) = 23.14$ Hz, CO]; 210.8 [d, ${}^{2}J(PFeC) = 24.15$ Hz, CO]; 210.8 [d, $^{2}J(PFeC) = 23.14$ Hz, CO]; 143.2 [s, C-4, $C_{6}H_{2}(CH_{3})_{3}$]; 132.6 [s, C-2, C-6, C₆H₂(CH₃)₃]; 132.4 [s, C-2, C-6, $C_6H_2(CH_3)_3$; 131.4 [m, C-3, C-5, $C_6H_2(CH_3)_3$]; 125.3 [d, ${}^{1}J(PC) = 52.33$ Hz, C-1, $C_{6}H_{2}(CH_{3})_{3}$]; 125.2 [d, ${}^{1}J(PC) = 53.32$ Hz, C-1, $C_{6}H_{2}(CH_{3})_{3}$; 113.2 (s, C-1, C_5H_4 ; 112.8 (s, C-1, C_5H_4); 91.7, 91.5, 91.2, 91.1, 89.0, 88.2, 85.3, 84.9 (s, C-2, C-3, C-4, C-5, C₅H₄); 48.5 (s, C-7, 48.5 $C_{10}H_{19}$; (s. C-7, C₁₀H₁₉); 44.2 (s, C-11, C₁₀H₁₉); 44.0 (s, C-11, $C_{10}H_{19}$; 36.1 (s, C-6, $C_{10}H_{19}$); 36.0 (s, C-6, $C_{10}H_{19}$); 35.5 (s, C-9, $C_{10}H_{19}$); 30.2 (s, C-10, $C_{10}H_{19}$); 30.1 (s, C-10, $C_{10}H_{19}$); 28.4 (s, C-12, $C_{10}H_{19}$); 24.8 (s, C-8, C₁₀H₁₉); 24.7 (s, C-8, C₁₀H₁₉); 23.2, 23.1, 22.5, 22.2, 22.1, 21.0, 20.7 [s, C-13, C-14, C-15, C₁₀H₁₉, o-CH₃, p-CH₃, $(CH_3)_3C_6H_2$]; 14.0 ppm [d, ${}^1J(PC) =$ 33.90 Hz, $(CH_3)P$].—³¹P-NMR (162.0 MHz, $[D_3]$ -Nitromethan): $\delta = -20.8$, -21.2 ppm.—IR (Toluol): v(CO) = 2046 (s), 2001 (s) cm⁻¹.—Ber. für C₂₇H₃₈FeIO₂P (608.32): C 53.31, H 6.30; Gef. C 54.30, H 6.67.

3.10. { $Dicarbonyl[\eta^{5}(c-2-isopropyl-t-5-methylcyclo-hexan-r-1-yl)cyclopentadienyl]ferrio}-[2,4,6-trimethyl-phenyl-(methyl)phosphan] (9)$

Wie für **6a** beschrieben aus 120 mg (0.197 mmol) $\{NMC_5H_4(OC)_2[H(Me)(Mes)P]Fe\}I$ (8) und 22 mg (0.200 mmol) Kalium-tert.-butylat (5) in 10 ml Toluol.—Ausb. 54 mg (57%).—Rotes Öl.—¹H-NMR (400.1 MHz, $[D_8]$ -Toluol): $\delta = 6.78$ [s, 4 H, $H_2C_6(CH_3)_3$; 4.57 (m, 1 H, H_4C_5); 4.54 (m, 1 H, H_4C_5); 4.43 (m, 1 H, H₄C₅); 4.39 (m, 1 H, H₄C₅); 4.20 (m, 2 H, H_4C_5 ; 4.15 (m, 2 H, H_4C_5); 2.68 (m, 2 H, H^6 , $H_{19}C_{10}$); 2.64 [s, 12 H, o-CH₃, (H₃C)₃C₆H₂]; 2.11 [s, 6 H, p-CH₃, $(H_3C)_3C_6H_2$; 1.74 [d, ²J(PCH) = 12.8 Hz, 3 H, $(H_3C)P$]; 1.73 [d, ²J(PCH) = 12.8 Hz, 3 H, $(H_3C)P$]; 2.01–1.88 (m, 2 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.68 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.63 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.60–1.40 (m, 1 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.40–1.28 (m, 3 H, $H^{9/9'}$, $H^{11/11'}$, $H^{8/8'}$, H^{12} , $H_{19}C_{10}$); 1.20–0.76 (m, 8 H, H⁷, $H^{8/8'}$, H^{10} , $H^{11/11'}$, $H_{19}C_{10}$); 0.88 [d, ${}^{3}J(HCCH) = 6.0$ Hz, 3 H, H^{13} , $H_{19}C_{10}$]; 0.87 [d, ${}^{3}J(HCCH) = 6.4$ Hz, 3 H, H^{13} , $H_{19}C_{10}$]; 0.79 [d, ${}^{3}J(HCCH) = 6.4$ Hz, 3 H, H^{15} , $H_{19}C_{10}$; 0.78 [d, ³J(HCCH) = 6.8 Hz, 3 H, H¹⁵, $H_{19}C_{10}$; 0.64 [d, ³J(HCCH) = 6.4 Hz, 3 H, H¹⁴, $H_{19}C_{10}$; 0.63 [d, ³*J*(HCCH) = 6.4 Hz, 3 H, H¹⁴, $H_{19}C_{10}$].—¹³C-NMR (100.6 MHz, [D₆]-Benzol): $\delta =$ 226.8 [d, ${}^{2}J(PFeC) = 24.64$ Hz, CO]; 218.6 [d, $^{2}J(CFeP) = 23.39$ Hz, CO]; 218.4 [d, $^{2}J(PFeC) = 23.83$ Hz, CO]; 142.0 [d, ${}^{2}J(PCC) = 12.11$ Hz, C-2, C-6, $C_6H_2(CH_3)_3$; 141.9 [d, ²J(PCC) = 12.11 Hz, C-2, C-6, $C_6H_2(CH_3)_3$; 135.6 [s, C-4, $C_6H_2(CH_3)_3$]; 129.0 [d, ${}^{3}J(\text{PCCC}) = 7.65 \text{ Hz}, \text{ C-3}, \text{ C-5}, C_{6}H_{2}(\text{CH}_{3})_{3}]; 125.1 \text{ (s,}$ C-1, C₅H₄); 107.2 [d, ${}^{1}J(PC) = 54.93$ Hz, C-1, C₆H₂(CH₃)₃]; 92.7, 91.8, 88.3, 87.7, 85.2, 84.7, 81.9, 81.5 (s, C-2, C-3, C-4, C-5, C₅H₄); 48.7, 48.6 (s, C-7, C₁₀H₁₉); 44.6, 44.4 (s, C-11, C₁₀H₁₉); 36.5, 36.4 (s, C-6, $C_{10}H_{19}$; 36.2, 36.1 (s, C-9, $C_{10}H_{19}$); 30.3, 30.3 (s, C-10, $C_{10}H_{19}$; 28.7, 28.6 (s, C-12, $C_{10}H_{19}$); 25.2, 25.1 (s, C-8, $C_{10}H_{19}$; 24.4 [d, ³J(PCCC) = 11.12 Hz, o-CH₃, (CH₃)₃C₆H₂]; 24.2, 24.1, 24.0, 23.4, 23.3, 22.5, 22.3, 21.9 [s, C-13, C-14, C-15, C₁₀H₁₉, *p*-CH₃, (CH₃)₃C₆H₂]; 14.4 ppm [d, ${}^{1}J(PC) = 35.47$ Hz, $(CH_{3})P$].— ${}^{31}P$ -NMR (162.0 MHz, $[D_8]$ -Toluol): $\delta = -45.4, -47.5$ ppm.— IR (Pentan): v(CO) = 1998 (s), 1954 (vs) cm⁻¹.—Ber. für C₂₇H₃₇FeO₂P (480.41): C 67.50, H 7.76; Gef. C 66.43, H 6.98.

Literatur

- [1] W. Malisch, J. Reising, F.-J. Rehmann, Inorg. Chem., eingereicht.
- [2] A. Rauk, L.C. Allen, K. Mislow, Angew. Chem. 1970, 82, 453; Angew. Chem. Int. Ed. Engl. 9 (1970) 400.
- [3] (a) W. Angerer, W.S. Sheldrick, W. Malisch, Chem. Ber. 118 (1985) 1261. (b) L. Weber, K. Reizig, R. Boese, Chem. Ber. 118 (1985) 1193. (c) L. Weber, K. Reizig, R. Boese, Organometallics 4 (1985) 1890. (d) W. Malisch, K. Jörg, E. Gross, M. Schmeußer, A. Meyer, Phosphorus Sulfur 26 (1986) 25. (e) D.S. Bohle, T.C. Jones, C.E.F. Rickard, W.R. Roper, Organometallics 5 (1986) 1612. (f) L. Weber, K. Reizig, M. Frebel, Chem. Ber. 119 (1986) 1857. (g) R. Weinand, H. Werner, Chem. Ber. 119 (1986) 2055. (h) J. Grobe, R. Haubold, Z. Anorg. Allg. Chem. 534 (1986) 100. (i) F. Neif, R. Mercier, F. Mathey, J. Organometal. Chem. 328 (1987) 349. (j) D.S. Bohle, G.R. Clark, C.E.F. Rickard, W.R. Roper, J. Organometal. Chem. 393 (1990) 243.
- [4] W. Malisch, R. Maisch, A. Meyer, D. Greissinger, E. Gross, I.J. Colquhoun, W. McFarlane, Phosphorus Sulfur 18 (1983) 299.
- [5] (a) W.E. Buhro, J.A. Gladysz, Inorg. Chem. 1985, 24, 3505.-W.E. Buhro, B.D. Zwick, S. Georgiou, J.P. Hutchinson, J.A. Gladysz, J. Am. Chem. Soc. 110 (1988) 2427. (b) B.D. Zwick, M.A. Dewey, D.A. Knight, W.E. Buhro, A.M. Arif, J.A. Gladysz, Organometallics 11 (1992) 2673.
- [6] (a) G.T. Crisp, G. Salem, F.S. Stephens, S.B. Wild, J. Chem. Soc., Chem. Commun. (1987) 600. (b) G.T. Crisp, G. Salem, S.B. Wild, F.S. Stephens, Organometallics 8 (1989) 2360.
- [7] E. Hey-Hawkins, S. Kurz, J. Organometal. Chem. 479 (1994) 125.

- [8] (a) D.S. Marynick, J. Chem. Phys. 73 (1980) 3939.-D.S. Marynick, D.A. Dixon, J. Phys. Chem. 86 (1982) 914. (b) C.A. Jolly, F. Chan, D.S. Marynick, Chem. Phys. Lett. 174 (1990) 320.
- [9] (a) D.S. Marynick, W.N. Lipscomb, Proc. Natl. Acad. Sci. USA
 79 (1982) 1341. (b) T.A. Halgren, W.N. Lipscomb, J. Chem. Phys. 58 (1973) 1569.
- [10] J.R. Rogers, T.P.S. Wagner, D.S. Marynick, Inorg. Chem. 33 (1994) 3104.
- [11] W. Malisch, A. Spörl, H. Pfister, J. Organometal. Chem., eingereicht.
- [12] (a) E. Cesarotti, H.B. Kagan, R. Goddard, C. Krüger, J. Organomet. Chem. 162 (1978) 297. (b) M.L. McLaughlin, J.A. McKinney, L.A. Paquette, Tetrahedron Lett. 27 (1986) 5595.
- [13] G. Binsch, in: L.M. Jackman, F.A. Cotton (Eds.), Dynamic NMR Spectroscopy, Academic Press, New York, 1975, Ch. 3, p. 76.